

Enhancing Statistical Skills in Undergraduate Ecology: A Multi-Week Laboratory Project Investigating Bird Feeding Preferences

Quantitative Skills in Undergraduate Biology

- Statistical skills are essential in modern biology:
 - **Biological research**
 - Graduate school
 - Scientific careers
- Yet most undergraduate biology students enter with little statistical background
- National initiatives emphasize the need for quantitative skills in undergraduate science education:
 - o "Biology majors headed for research careers need to be educated in a more quantitative manner."¹
 - "There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses...Statistical analysis is poorly integrated into undergraduate biology course work."²
 - "In undergraduate biology majors as diverse as wildlife biology and neuroscience, educators have called for greater emphasis on quantitative skills, notably the use and interpretation of statistical tests."³
 - "Separation...between biological knowledge and quantitative skill sets often causes students to view these two fields as disconnected."¹ "As a consequence, they do not learn how to correctly apply their mathematical knowledge to solve a scientific problem."³
- To address these needs, we developed a multi-week laboratory investigation for Ecology and Adaptation (BIOL 131 - 74 students) at Radford University, VA

Introducing Statistics in Ecology

- Why use statistics?
- What are null and alternative hypotheses?
- What are independent (IV) vs. dependent (DV) variables?

- What are categorical vs. numerical variables?
- Designing ecological experiments (sample size, repeatability, independence)
- Common statistical tests and scientific graphing

IV	DV	Statistical Test	Graph	
Numerical	Numerical	Regression (predict DV from IV) or correlation (co-vary)	Scatter plot	
Categorical	Numerical (means)	<i>t</i> -test (2 groups) or ANOVA (more than 2 groups)	Bar chart of means & standard errors	
Categorical	Categorical (%'s or totals)	Chi-square (X ²) test	Bar chart of %'s or totals	
Numerical	Categorical	Uncommon		

Research Questions

- Do bird species (e.g., Northern Cardinals vs. Blue Jays) differ in seed preference? (millet, sunflower, thistle, suet)
- Do bird species (e.g., Northern Cardinals vs. Blue Jays) differ in feeding location? (hanging vs. ground feeders)

Kiersten Newtoff and Dr. Christine Small Department of Biology, Radford University, Virginia, 24142

Learning About Local Birds

- Discussing ecological literature: Students read and discuss a scientific
- Comparing bird structure and function: Students examine preserved specimens from the Radford University Natural History Museum and consider :
- How do our local bird species differ in body size, beak size, beak shape?
- How might these physical differences affect their feeding habits?
- Comparing supplementary wild bird foods: Students examine 4 common foods offered in bird feeders (sunflower, suet, millet, thistle) and consider : • How do food sources differ in accessibility (e.g., seed size)?
- How might this affect bird feeding preferences? 0

Quantifying Bird Feeding Behaviors

- Three hanging bird feeders, each filled with sunflower, thistle, and millet seeds
- Two hanging feeders, each filled with suet cakes
- Students collect data (outside of class) in small groups for eight 30 minute sessions. For each feeding observation, the following information is recorded:
- Bird species, feeding location, and type of seed selected

Observer(s):	Date (D/M/Y):				
Beginning Time:	Ending Time:		Temperature (°F):		
General Weather Conditions (d	escribe):				
Bird Species	HANGING FEEDERS			GROUND	
	Sunflower	Thistle	Millet	Suet	GROUND

interactions between species, feeding behaviors, feeding locations, other cool stuff):

References & Supplemental Information

- 1. National Research Council. (2003) BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Washington, D.C.: National Academy Press.
- 2. Metz, A.M. (2008) Teaching statistics in biology: Using inquiry-based learning to strengthen understanding of statistical analysis in biology laboratory courses. CBE Life Sciences Education, 7, 317-326.
- 3. Goldstein, J., & Flynn, D.F.B. (2011). Integrating active learning & quantitative skills into undergraduate introductory biology curricula. The American Biology Teacher, 73 (8), 454-461.
- 4. Jones, D.N., & Reynolds, S.J. (2008). Feeding birds in our towns and cities: A global research opportunity. Journal of Avian Biology 39: 265-271.
- 5. "All About Birds: The Cornell Lab of Ornithology" (www.allaboutbirds.org/) and "Animal Web: University Diversity (www.animaldiversity.ummz.umich.edu/)
- Funded by NSF: Transforming Undergraduate Education in Science, Technology, Engineering and Mathematics (TUES) Program Grant. SUMS4BIO: Strengthening Undergraduate Mathematics and Statistics Education for Biologists

Identifying common bird species: Students learn 15 common bird species

article⁴ considering positive and negative effects of supplementary bird feeding.

• How do food sources differ in fat content? (calculating mg fat per seed)

Other observations (competitive interactions, weather influences, etc.)

Michigan Museum Zoology" of

Exploratory and Statistical Data Analysis

for detailed comparison **Bird Species** Sur American crow American goldfinch American robin **Black-capped chickadee** Blue jay Dark-eyed junco European starling Hairy woodpecker House finch Mourning dove Northern cardinal **Red-bellied woodpecker** Sparrow **Tufted titmouse** White-breasted nuthatch

Students defined research questions, hypotheses, and experimental variables Students determined appropriate graph type to display their data

Northern cardina **Bird Species**

- $X^2_{calculated} = 84.49$ • $X^2_{critical} = 7.81$ • Reject H

Interpreting Data Using Bird Natural History

- - Physical description and life span
 - Geographic range, habitat, feeding habitats, behavior
 - Reproduction
 - Threats and conservation status
- Making connections between science and math: Students used natural history information to provide plausible explanations for observed trends in data
- E.g.,: "Blue jays have bills that are useful for a wide variety of food. In the wild they are typically observed eating seeds and eggs. This trend is also reflected in our data: blue jays preferred sunflower seeds and suet – a soft food that is high in fat, similar to eggs. After running a Chi-Square Test, we conclude that blue jays and cardinals have different food preferences ($X^2 = 84.49$, p < 0.05)."

Learning Outcomes & Future Directions

- The importance and use of statistics in biology
- How to create and interpret scientific graphs
- How to select, use, and correctly interpret a statistical test
- How to use statistics to assess confidence in biological trends
- Possibly re-evaluate this experimental design and analysis in two new courses: Math for Biologists (MATH 119) and Statistics for Biologists (STAT 219)⁶
- Use this lab as a model for developing stronger statistical bases for laboratory research projects in this and other biology courses⁶

From the large class data set (n = 7,046!), each group chose two bird species

nflower	Thistle	Millet	Suet	Ground			
10	1	6	7	77			
250	360	98	40	106			
14	6	15	9	155			
157	77	94	29	170			
125	15	11	96	258			
32	41	51	5	378			
4	2	4	2	18			
39	3	8	86	7			
365	186	92	46	434			
40	31	13	5	454			
185	8	14	9	275			
20	2	5	51	4			
241	55	209	7	732			
229	39	47	20	87			
125	6	2	106	36			

Students compiled written descriptions of their two bird species using two reliable online resources⁵. Some information gathered:

