Using genome annotation projects to teach eukaryotic gene structure and to engage students in genomics research
Maria S. Santisteban, James Godde, Anya L. Goodman, Charles R. Hauser, Don Paetkau, Catherine Reinke, Wilson Leung, Cindy Arrigo, Nathan T. Mortimer, & Laura K. Reed
Advances in Biology Laboratory Education, 2023, Volume 43
https://doi.org/10.37590/able.v43.art17
Abstract
The Genomics Education Partnership (GEP; https://thegep.org) began as a consortium of 16 faculty in 2006 with a goal of providing students with Course-based Undergraduate Research Experiences (CUREs) in genomics. Today, GEP has over 200 faculty from more than 180 institutions and engages more than 3,900 undergraduates in authentic genomics research annually. These faculty joined and continued to participate in the GEP for many reasons, including the collaborative nature of the research, the well-established infrastructure, and the supportive network of like-minded colleagues. Faculty implement GEP materials in diverse settings ? ranging from short modules (2-8 weeks) within a course, to a standalone full-semester course, to independent student research. GEP students show significant gains in scientific knowledge and attitudes toward science. In addition to improving their understanding of the research process and how new knowledge is created in the field, GEP students acquire desirable and transferable skills essential for future participation in the workforce, such as problem solving, independence, application of knowledge, team-work, and collaboration. Students also gain competence in the use of computational algorithms to analyze large biological datasets ? thereby preparing students for a growing need of a workforce trained at applying statistics and computational tools to analyze large datasets. In addition, GEP students and their faculty mentors are eligible to be co-authors on the scientific publications that are based on their work. In this workshop, we will provide an overview of the GEP community, a hands-on guided tour of our introductory curriculum aimed to teach gene structure, transcription, translation, and processing, and a step-by-step walkthrough that illustrates the protocol for annotating a protein-coding gene in Drosophila. Participants will receive information on how to join the GEP community and receive training and resources to enable their implementations.
Keywords: transcription, translation, bioinformatics, undergraduate research, Genomics Education Partnership (GEP), gene annotation, eukaryotic gene structure, genome browser, mRNA processing
University of Victoria (2022)